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Maximum dissipation resulting from lift in a 
slow viscous shear flow 
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The lift tensor for any three-dimensional body moving in a linear shear flow a t  
low Reynolds numbers has been calculated by asympototic methods. The tensor 
is applied to the problem of the motion of a dumb-bell shaped particle. The 
particle is shown to have a preferred periodic orbit which corresponds to maxi- 
mum dissipation. The dissipation is calculated and the intrinsic viscosity of a 
dilute suspension of such particles is predicted. Experiments conducted with a 
single particle tend to confirm the stability of the predicted orientation. 

1. Introduction 

homogeneous fluid of viscosity p,, is defined by 
The so-called intrinsic viscosity, Y, of a dilute suspension of particles in a 

P = PO(1 + YC), (1) 

where p is the viscosity of the suspension and c is the volume concentration of the 
particles. Einstein (1905) and Brenner (1958) have shown that the intrinsic 
viscosity for a dilute suspension of spheres is Q. Jeffery (1922) calculated the 
intrinsic viscosity for ellipsoidal particles in a linear shear flow using Stokes’s 
equations. However, his solution was indeterminate in the sense that the motion, 
which is periodic, depends upon the initial conditions of release of the particle. 
In  order to obtain more definite results Jeffery hypothesized that ‘the particle 
will tend to adopt that motion which, of all the motions possible under the 
approximated equations, corresponds to the least dissipation of energy ’. Taylor 
(1923) reported experimental results which appeared to verify Jeffery’s minimum 
dissipation hypothesis, at  least for the case of spheroids. Saffman (1956) indi- 
cated that the effect of fluid inertia on spheroidal particles is to alter slowly the 
orbit of the particle in a direction consistent with Jeffery’s hypothesis. However, 
the magnitude of the predicted inertia effect was too small to account for Taylor’s 
experiments. 

Christopherson & Dowson (1959) analysed the motion of a sphere moving 
slowly down a tube whose inner diameter was only slightly in excess of the sphere 
diameter. A particular eccentricity of the sphere was found to correspond to 
minimum dissipation, and experiments were conducted to see whether the 
sphere would assume this eccentricity. Exact verification was not possible and 

-f Now at Lockhead Palo Alto Research Laboratory. 
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the authors concluded that ‘all that can be asserted a t  this stage is that for very 
small velocities of descent the minimum dissipation criterion has been approxi- 
mately vertified’. The authors go on to say, ‘so far as is known, this particular 
system of a ball in a close-fitting tube has no practical application. It might 
therefore be rewarding to seek other systems in which the minimum hypothesis 
can conveniently be tested rather than endeavouring to refine the methods by 
which observations on this one can be made.’ 

At this point it should be mentioned that cases of maximum dissipation have 
been reported. Cox (1965) has demonstrated analytically that the second-order 
effect of fluid inertia is to orient settling disks and rods so that their resistance 
is a maximum. Mason, Karnes & Goldsmith (1963) conducted experiments in 
which disks and rods assumed maximum dissipative orbits when undergoing 
Couette flow at moderate Reynolds numbers. 

One purpose of the present paper is to demonstrate, analytically, that, even 
within the restricted class of flows considered by Jeffery, the minimum dissipa- 
tion hypothesis does not hold. We will consider the effect of fluid inertia on a 
bouyantly neutral dumb-bell shaped particle in a linear shear flow. The motion 
of the particle will be determined by employing a lift tensor, derived in appendix 
A for any three-dimensional body, to the case of a sphere. The lift tensor will be 
obtained by generalizing the original result of Saffman (1965), who found that 
the sphere experiences a component of lift due to fluid inertia which, to the order 
given, is independent of the spin (for reasonable spin rates). It is this inertial lift 
which renders the dumb-bell motion aperiodic and moves it to its final preferred 
orientation. 

2. Analysis 
Consider a dumb-bell shaped body (figure l), composed of two neutrally 

bouyant spheres of radius a, constrained to remain with centres a distance 21 
apart. The parameter E = all is considered to be a fixed number, small compared 
with unity. We define two Cartesian co-ordinate systems whose origins remain 
coincidental a t  the point of symmetry half-way between the spheres. The first, 
or unprimed, co-ordinate system is fixed in the body with the x-axis connecting 
the centres of the two spheres. The unit vectors i, j, k are associated with the 
x, y, x axes. The second, or primed, co-ordinates are fixed in space and have unit 
vectors i’, j’, k’ associated with the x’, y‘, z’ axes. The undisturbed flow field, V, 
is considered to be a linear shear flow, 

The direction cosines between the two co-ordinate systems are given by 
v = Ky’k. (2) 

(3) I i’ = ZIi+Zzj+Z3k, 
j‘ = m,i+m,j+m,k, 

k’ = m,i+n,j+n,k. 
The co-ordinate systems and direction cosine notation have been chosen in order 
to facilitate comparison with Jeffery’s analysis for an ellipsoid. Distinguishing 
the two spheres as A and B, we define the difference between the velocity of 
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sphere A ,  and the undisturbed velocity V A  a t  the centre of A, as UA. The force on 
sphere A is denoted by FA while the torque on the dumb-bell due to sphere A is 
TA. Neglecting the interaction between spheres A and B we have 

TA = li x FA+T,#, (4 )  

where T$ is the torque arising from the rotation of sphere A and the vorticity of 
the fluid, 

/4 
Y’ 

-- T i  - [ ( V x V ) , - w , i ]  = [~i’--,i]. 
4np0 a3 

. X‘ 

/ I 

2’ 

Y Y 
FIGURE 1. Co-ordinate systems for the dumb-bell shaped particle. 

We then have 

TA = 4~r,u,a~[~Z, - Zw,] i + [47rp0a3Z, - ZF,] j + [4np0a31, + lFv] k. (6) 

We may now evaluate Fu and F’ in terms of the Stokes drag and a higher-order 
force represented by a lift tensor 9, 

F f  = 6 n p , a U f + s j U f ,  ( 7 )  

and in turn express U t  in terms of w. In  principle, the resulting expression for 
the torque can be used to solve the equations of motion for a rigid body. However, 
it  is possible to express the effects of fluid inertia to an order which is lower than 
the order of the inertia of the body. This allows us to obtain the motion, to the 
order of the body inertia, by setting the torque equal to zero. Saffman has shown 
that the lift tensor may be computed to O(Rk) ,  where 

R, = Ka2/V, (8) 
14-2 
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under the restriction that 
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R K <  1, R,<R$, 

+ [~Z,Z3+$?m,m3+dn,n3+%m3n,+Ym2n3] U,A 
+ [BZi + %‘mE + d n ;  + @m,n, + 9’m2n2] Ut, l  

4A = 67r,u0 a U t  + [all H 3  + $?m, m3 + d n ,  n3 -t. @rn, n3 + 9 m 3  n,] U$ 
+ [ 9 1 2  I, + %‘m, m3 +dn2 n3 + %m, n 3  + 9’m3 n2] Uf 

(9) 

(13) ’ 

where R, is the conventional Reynolds number based on sphere radius and 
relative fluid velocity. If we define an upper limit on R, as 

R,,, = KHaCC/u = R,/e 

and impose the restriction that 

R, < 1, R$ < c, 

the force on the sphere will be O(R$) whereas the boLj inertia is O(. 
The lift tensor will be denoted in space-fixed co-ordinates as 

F F” = ~- 
0 o* = - 
K ’  /Lo Kla ’ 

the equations of motion become: 

Defining 
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and combining equations (13), (14) and (16)) we obtain 

(0; = ill, 
w;/* = $ez12 - m1n3 - 9’*m,m3n: - %*m:n,n, 

w,* = $?l, + m, n2 + Y*m,m, n: + % *m: n, n2 

- m1n1(~*lll3 +%*m,m,+d*nln,), 

+ mlnl(B*llZ2 +%‘*m,m,+d*n,n,). 

213 

At this point we introduce the EuIer angles 8, qi and $, where 8 is the angle 
between the x- and x’-axes, qi is the angle between the (x’y’)- and (x’, %)-planes, 
and $ is the angle between the (x‘, x)- and (x, y)-planes. Thus we have, 

0: = COSO, \ 

and 

ae a4 w,* = -sin$--sinBcos+, at* at* 

a8 dq5 o,* = -cos$+-sin8sin$, at* at* 

m, = sin 8 cos qi) 
m2 = cos 8 cos qi cos $ - sin qi sin $) 
m3 = - sin qi cos qi - cos 8 cos qi sin $, 
n, = sinosinqi, 
n2 = cos qi sin $ i- cos 0 sin q5 cos $, 
n3 = cos q5 cos $ - cos 8 sin qi sin e, 
I,  = case, 
I ,  = - sin 8 cos $, 
I ,  = sin 8 sin $. 

It is possible to obtain an ordinary differential equation for the nutation angle 
as a function of the precession angle without dropping any of the terms in (18). 
We obtain 

sin qi cos qi sin 0 cos 8{l + sin2 8[ (Y*  + %*) sin qi cos qi 

cos2 qi + 9.2 + sin qi cos qi sin28{ (%* cos2 qi - Y* sin2 $1 
+d* sin2 q5 + %‘* cos2 q5 - B*]> 

+ (d* - %*) sin qi cos $1 
* (20) 

9-  - 
d 8  

3. Results 

dependent on the initial condition, O0, analogous to Jeffery’s result, 
The Stokes solution, R, = Pcj. = 0, of (20) is periodic with period T, and is 
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where O0 = 8 (r)  = 0) and a(€.) = $@. The properties of (20) for non-zero values of 
R, have been generally established by numerical integration. If the off-diagonal 
perturbations Y* and @* are set to zero, the remaining perturbations have the 
effect of changing the shape of the Stokes orbit, (2 l ) ,  for a given value of B0 
between 0 and in. However, the motion remains periodic. This is because the 
diagonal perturbations act in the instantaneous direction of the sphere motion 
and the resulting torque is normal to the instantaneous plane of motion of the 
dumb-bell. The off-diagonal perturbations render the motion aperiodic, with the 
Y* perturbation exerting a much stronger influence than the @* perturbation. 
This results from the fact that the Y* perturbation acts in the z’-direction as a 
result of relative velocity in the &direction, while the @* perturbation acts in the 
2’-direction and is due to relative velocity in the ,$-direction. The latter velocity 
changes sign in each quadrant, which tends to have a compensating effect, while 
the former slip is always in the same direction with respect to an observer on the 
particle. Therefore, if all the perturbation quantities are assumed to be of the 
same magnitude, the Y* perturbation determines the stability of the particle 
orbit, and it is not necessary to know the explicit values of the other perturbation 
quantities. The Y* perturbation has been found to be a positive quantity which 
causes the axis of the dumb-bell to move asympototically into the plane of the 
fluid motion; during this process the nutation angle never exceeds a value of 
$ 7 ~ .  A position of unstable equilibrium exists when the dumb-bell axis coincides 
with the vorticity vector and the spheres rotate with the fluid. Our analysis 
therefore predicts that the effect of fluid inertia is to move the particle to the 
maximum dissipative position (that this is in fact the only maximum will be 
demonstrated in $4). 

In order to obtain a more rigorous result, the entire lift tensor was calculated; 
the details are given in appendix A. The calculation was quite lengthy and it 
would have been difficult to justify on the basis of this problem alone. However, 
the results obtained are applicable to the motion of any three-dimensional body 
in a linear shear flow. The calculation was therefore justifiable on the basis of the 
general usefulness of the result. 

In order to observe the motion of a dumb-bell shaped particle in a shear flow an 
experiment was conducted, the results of which are discussed in detail in $ 5 .  It 
is only necessary to mention here that the number of revolutions required for the 
particle to move into the maximum dissipative orbit was in good agreement with 
the prediction. The experimental results may be interpreted as confirmation of 
the predicted stable configuration and the value of the Y* perturbation.? 

4. Dissipation and viscosity 
The determination of the intrinsic viscosity of a dilute suspension of dumb- 

bell shaped particles, in the absence of Brownian motion, may be calculated on 
the basis of the Stokes approximation, in accordance with the definitions given 
by Brenner (1  968). 

t The Y* component of the lift tensor w-as found to be a factor of 47r smaller than that 
originally published by Saffman. 
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Before making this calculation we will modify (21) and (22) to take into account 
the effect of interaction between the spheres. We define U$ as the disturbance at 
sphere A due to the motion of sphere B. The Stokes drag on sphere A is then 
given by 

FA = 6np, a{VA - (o x l i )  + Us}, 

where o is the angular velocity of the dumb-bell. The velocity field, U,, resulting 
from the motion of sphere B may be determined approximately by considering 
it to be the result of a point force FB acting at  the centre of sphere B (Happel & 
Brenner 1965). 

,I 

1 
B -  67~,u,r 24np0 r 

F B =  6 ~ p , a [ V ~ - w x ( - l ) i ]  

u FB r2 V[FB. V] - , 

where FB is taken to be 

and ?"2 = (x-Z)2+y2+9. 

The drag on sphere A is then 

~- - (1 + i e )  (Km,n,Z) i + (1 + be) [Icnz,n,Z - Zo,] j + (1 + 3e) [~m,n, l  + lo,] k. FA 
67V0a 

(27 1 
As a result of the additional term representing the interaction between the 
spheres, (21) and (22) are modified in such a way that 

a(€) = $€2(1-$€). (28) 

The accuracy of this correction term is demonstrated experimentally in 3 5.  

dissipation, caused by the presence of sphere A ,  in a linear shear flow. This is 
Returning to the subject of dissipation, we are interested in the additional 

(29) E* = eZpo[Va - (o x l i )  + U6l2+ Ole3), 

which may be rewritten to O(e2) as 
sin2 $4 cos2 $4 sin4 8 

E* = 6nd3p0(~ + $8) 
[COSZ $4 +a(€)] * 

A time average dissipation rate, E&, for the dumb-bell may be defined as 

EZv = 2 4 6  ~ ~ l ~ p , e ~ B ' ( 8 , ,  e) + O(e3),  (31) 

sin2 $4 cos2 $d$4 

(1 + a(€)} tan2 8, 

where 

and where we have used ( 2 2 )  for the period as well as the result 

d$/dt* = cos2 $4 +a(.) (32) 

from the Stokes solution. The dissipation, to the order given in (31), is due to the 
frictional drag created by a component of cross-flow along the axis connecting 
the spheres; the cross-flow arises because of the constraint between the spheres. 
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When the dumb-bell axis coincides with the vorticity vector, 8, = 0, the dissi- 
pation is O(e3),  whereas when 8, = in- the dissipation is a maximum. Also, the 
dissipation increases monotonically with 8, so that there are no local maxima 
between 8, = 0 and 19, = in-. 

The viscosity of a dilute suspension of dumb-bell shaped particles is defined as 

where the subscript denotes the ‘ centre ’ of sphere A and the summation is over 
all spheres. @ is the Rayleigh dissipation function connected with the undisturbed 
motion V and Q is the volume of the suspension; the remaining terms retain their 
original definition. 

The first term in the summation, which accounts for sphere translation 
relative to the surrounding fluid, includes the effect of interaction between the 
two spheres of a given dumb-bell, because this effect is of the same order, O(e3),  
as the second and third terms of the summation. All other interaction effects are 
considered to be of higher order. 

When the particles are in the minimum dissipative position, the only non-zero 
term in the summation is the one involving the dissipation function, since the 
spheres are moving and rotating with the fluid. I n  that case, if the particles are 
uniformly distributed, or if the undisturbed shear flow is linear, the intrinsic 
viscosity will be Einstein’s value of g. The intrinsic viscosity for other orientations 
of dumb-bell shaped particles in a linear shear flow may be calculated by evaluat- 
ing (33); of course the unsteady terms appearing in the equation must be aver- 
aged as was done in obtaining (31). The intrinsic viscosity corresponding to the 
maximum dissipative orbit is of particular interest because of the predicted 
stability of that configuration. The maximum intrinsic viscosity has been 
calculated to be 

1.84 
v,,, = ~ + 3.5 + O(t:). 

8 
(34) 

It should be emphasized that this definition of viscosity is based on energy dissi- 
pation. A more general discussion of the rheology of solutions of dumb-bells is 
beyond the scope of this paper. 

5. Experiment 
In order to obtain general confirmation of the predicted motion, a large 

cylindrical Couette-flow apparatus was constructed. A 12 in. diameter glass 
cylinder, 12 in. in length, was placed on a rotating turntable driven by a frac- 
tional horsepower motor. A 4 in. diameter cylinder of the same length and closed 
at the bottom was mounted coaxially within the larger cylinder. A small bearing 
at  the centre of the turntable kept the inner cylinder centred and allowed it to be 
rotated independently by means of another motor at the top of the apparatus. 
The bottom 2 in. of the annular region between the two cylinders was filled with 
distilled water in order to reduce end effects. The remainder of the apparatus was 
filled with castor oil, the flow field of which was determined to be one-dimensional 
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by measuring the circular velocity of a very small piece of neutrally buoyant 
plastic at various radial locations and depths. 

Several dumb-bell shaped particles were constructed from & in. diameter centre- 
less ground polyethylene and polypropylene spheres, which were slightly 
buoyant; the specific gravities varied between 0.92 and 0.94 while that of the 
castor oil was 0-96. Small holes, 0.007 in. in diameter, were drilled on each sphere 
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FIGURE 2. Prediction for the period as a function of shear rate. 
Experimental values, 0 ,  for E = 0.30. 

diameter and the spheres were connected with 0.010-0.012 in. diameter tempered 
wires. The wire length was adjusted so that the dumb-bells suspended in castor 
oil. The particles were ‘balanced’, by making minute adjustments of the amount 
of wire within each sphere, until the dumb-bells exhibited no preferred orienta- 
tion when they were suspended in stationary fluid. 

The shear rate for a given test was taken to be that at the centre of the dumb- 
bell. The location of the dumb-bell was determined by aligning a sighting device 
at  the top of the apparatus with a grid scribed on the turntable. The shear rate 
was varied by placing the centre of the particle at  different radial locations and 
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by employing various combinations of motor speeds. It was also possible to hold 
the particles fixed for short periods by counter-rotating the cylinders, thus 
minimizing Coriolis forces. 

In order to develop confidence in the experimental apparatus and simul- 
taneously check the first-order solution (R, = 0 ) ,  the period of rotation of the 
dumb-bells was measured as a function of the shear rate, K ,  and aspect ratio, E .  It 
was possible to measure the period accurately to within a few per cent because 
the particle swept past the radial lines scribed on the turntable very rapidly 
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effects, other than fluid inertia, present in the experiment. Since the centres of 
gravity and buoyancy of the dumb-bell could not be expected to coincide exactly, 
it must be assumed that some small resultant couple was acting, except when the 
line connecting the two points was vertical. This effect was minimized by balanc- 
ing the particle in stationary fluid. However, the natural convection present in 
the oil presented a limitation on this procedure; it was possible to reduce the rate 
of rotation below a half a degree per minute in the static fluid. It is felt that in a 
shear flow this small imbalance was not significant in altering the orbit, except 
near the (horizontal) maximum dissipative position, because of the averaging 
effect of the axial component of rotation. Small amounts of curvature in the 
wire connecting the two spheres also affected the observed equilibrium orienta- 
tion. For these reasons each test case was composed of two runs employing the 
same starting angle, O,, but with the dumb-bell reversed in direction. In  no cases 
were the particles observed to gravitate toward the (vertical) minimum dissipa- 
tive position. In  most of the cases the particles assumed the same equilibrium 
orbit from both directions. These final orbits had the appearance of the Stokes 
solution (21) with values of Oo which varied between 85 and 95 degrees, indicating 
a balance between fluid inertia and the other second-order effects described 
above. The following table gives values of the experimental parameters which 
are typical of those used to observe the particle motion: 

Sphere material 
Sphere diameter (in.) 
Aspect ratio, 6 

Exposed wire length (in.) 
Wire diameter (in.) 
Shear rate (see-1) 
Period (see) 
R K  

Polypropylene 
0.248 
0.247 
0.757 
0.010 
0.41 5 

82 
4.1 x 10-3 

Figure 4 depicts the solution of (20) for the values of 6 and R, given in the table 
above, and for a value of 8, of 45 degrees. Figure 5 compares estimates of the 
nutation angle, 8, based on visual observation, with predicted values. Both the 
prediction and the observations are of the minimum nutation angles occurring 
in a revolution, that is at  integer values of $1.. The observations must be re- 
garded as having a tolerance of about five degrees. In order to avoid the problem 
of starting transients in the fluid the particle was allowed to make a few revolu- 
tions before the observations were recorded. The number of revolutions required 
to reach the equilibrium orbit increased with the diameter and exposed length 
of the wire connecting the spheres. When the wire diameter exceeded 0-12 in. the 
rate of gravitation towards a preferred orbit was extremely small. It should also 
be noted that the requirement, R, < 8, imposed in the analysis was not well ful- 
filled in the experiment. However, it was not feasible to reduce the shear rate 
drastically because of the rapid increase of the period (figure 2), and the use of 
more viscous fluids was rejected in order to avoid the possibility of introducing 
non-Newtonian effects. It is felt that the experiment generally confirmed the 
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second-order effect of fluid inertia, subject to the stated qualifications regarding 
other second-order effects present in the experiment. 

The authors would like to acknowledge the advice of Professors Philip Saffman 
and Howard Brenner. The authors are also indebted to an anonymous referee, 
whose comments led to a great improvement in t,his paper. This research was 
supported by the Army Research Office (Durham) under Grant DA-ARO-D-31- 
124-G 649 and by the National Aeronautics and Space Administration. 
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FIGURE 4. Solution of equation (20) for c = 0.25, R, = 4.1 x 
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FIGURE 5 .  Comparison of prediction and experiment for integer values of $IT. 

Appendix A 
The method used for determining the lift force on a three-dimensional body 

moving in a linear shear flow is outlined in this appendix. The expression for the 
lift, which is given to O(R$), is applicable to any three-dimensional body for 
which the Stokes drag is known, unlike the Oseen correction for uniform flow 
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(Brenner 1961 ; Chester 1962) whichis restricted tobodieswithfore-aftsymmetry. 
We define a lift tensor, Ljk, by 

8 = q q +  (RiLjk%lqlpa)l, (A 1) 

where F is the force on the body and U is the relative velocity of the fluid with 
respect to the body. The Stokes drag, Ds, is given by 

D s ~  = 9i.jlJ. (A21 

The lift tensor, which is independent of the shape of the body, is found to be 

5.01 0 

1-82 0 1-73 

The calculation of L,, involves a straightforward extension of the original work 
of Saffman (1965). The co-ordinate system employed in this appendix is therefore 
in accord with that of Saffman, rather than the system used in the main body of 
this text. 

The exact problem is described by the following equations: 

pu.vu = -VP+pVZu, 
v .u  = 0, 

u = 8 x r on the body, 

u+U+Kzi as r+m. 

We now introduce the perturbations q and p by letting 

u = (U+mi)+q, 

P = KU,X+p, 

where the subscript denotes the z component of U .  The pressure gradient K U , i  is 
required in order that the undisturbed flow be a solution of the Navier-Stokes 
equations. The problem for the perturbation becomes 

p[(U + m i )  + p] .Vq + iKpz = - Vp +pV2q, @lo)  

v.q = 0, (A111 

q = - U - K z i + Q x r  on the body, (A 12) 

q + O  as r+m. (A 13) 

An asymptotic solution of these equations may be obtained by the method of 
matched asymptotic expansions. We note that three Reynolds numbers may be 
formed corresponding to the characteristic velocities U = U ,  Ka and Qa, where 
a represents the characteristic body dimension. The parameters appearing in the 
problem are thus 

We consider these parameters to play an equally important role as they become 
very small, i.e. 

R, = pUa/,u, R, = pKa2/p, Rn = pQa2/p. (A 14) 

O(R,) = O(R,) = O(Rn). (A 15) 



223 E. Y .  Harper and I-Dee Chang 

Our assumption regarding the orders of the Reynolds numbers is more restrictive 
than, but consistent with, the requirement given by Saffman. 

R,, 4 R$, R, 4 1, R~ 4 1. (A 16) 

Because the three characteristic velocities are of equal order, equation (A 15), 
the way in which we non-dimensionalize the perturbation velocity is arbitrary. 
We define 

The differential equations which appropriately describe q* to a given order depend 
on which region of the flow field is under consideration. We therefore introduce a 
length scale I, defined by 

and an intermediate variable, x:, by 

q* = q/u. (A 17) 

I/a = l/RZ, (0 < a), (A 18) 

x: = X J l .  (A 19) 

xf corresponds to the Stokes variable when a = 0;  when a = 4, xi* becomes the 
outer variable used by Saffman (1965). We obtain the following equation of 
momentum in xf variables: 

R;-"a(U* + q*) . V*q* + Rt-zu z* __ + iqz = -. Vp* + V*2q* + RzDs*G(r*) 

(A 20) 
[ 2: ' ] 

where a = R,/R, = O(l),  U* = U/lUl and p* = pl/,uU. The dimensionless 
pressure perturbation, p*, has the same magnitude as the viscous stress through- 
out the flow field. The last term on the right-hand side represents a concentrated 
force acting at  the origin; Ds* is the dimensionless Stokes drag, Ds* = Ds/,uUa. 
For values of xi 9 a, corresponding to (T > 0, the forcing term replaces the 
boundary condition on the surface of the body. The resulting solution describes 
the first-order velocity perturbation a t  distances exceeding the body dimension 
(Chang 1960; Chang & Finn 1961; Childress 1964). For values of xi = O(a), 
corresponding to (T = 0, the exact boundary condition (A 12) must be used. 

In  order to study the magnitude of q* and the appropriate governing equations, 
it  is convenient to think of the flow field as being divided into two regimes: 
(i) 0 < a < 4 and (iii) < a, separated by a region, (ii) g = 4, we will call the Saff- 
man region. We observe from (A20) that, for (T > 8, the forcing term, which 
represents the effect of the body, is of order o(R t ) .  This, together with the 
boundary condition q*+o as r*+ co, implies that q* = o(R$ in regime (iii). 
When = 4, the requirement that the transport and forcing terms be of the 
same order indicates that the perturbation q* is O(R$).  Equation (A20) reduces, 
in the limit RK+ 0, to 

(A31) 

which is the dimensionless form of Saffman's (1965) equation (3.10). When 
0 < g < 8, and O(R$) < q* < O( l), the transport term in (A 20) is of higher order 
than the viscous term. Between the body and the Saffman region the flow is 
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approximated uniformly to O(R$) by a Stokes solution (Kaplun 1967). We 
conclude, therefore, that the Saffman equation, (A21), with the delta function 
replaced by the exact boundary conditions (A 12) and (A 13), yields a uniformly 
valid solution for the entire flow field to O(R$).  In  terms of the method of inner 
and outer expansions, (A21) is the outer equation. The inner equation, to O(R$), 
is the Stokes equation and the body shape is characterized by the Stokes drag. 
The matching procedure is valid for any three-dimensional body for which the 
Stokes drag is known. In addition, the rotation of the body and the linear shear 
of the undisturbed field do not give rise to drag, as is demonstrated by Faxen's 
law. 

We proceed to find the lift tensor by considering the fundamental solution of 
(A21) for a unit force, d, in the direction of the Stokes drag Ds. The corresponding 
velocity and pressure perturbations, q' and p', are defined by the relations 

q* = RiIDs*l q', p* = R$IDs*lp'. (A 22) 

We solve the resulting equation 

V*p' - V*2q' + x* - + iq, = d* S(r*) (A231 [ 2: '1 
by introducing the Fourier transform 

The components of I' are 

ar k: k 

ar2 klE2 k 

- k  --1+r3-2-r3+k2rl ak, k2 = +A&-A~, k 

- k  l a k ,  --2--F3+k2r2 k2 = <ZAjk j -A2 ,  k 

- k  - - 2 g F 3 + k 2 r 3  ar3 = k $ZAjkj-A3, 
ak, 

where 

and 

klrl + k2r2 + k,r, = 0, 

k2 = k;+k2,+ki,  

Aj = dj/W. 

We now define qii, and the corresponding transform, Fij, by 

where qij is the velocity perturbation along the i-axis due to the component of 
d* along the j-axis. The Fourier transforms of these velocity perturbations are 

where 4, = A, ( 1 - 2 )  ( 1 - S ) ;  
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where 

where 

E.  Y .  Harper and I-Dee Chang 

The perturbations qi2, qLl, qk3 and q:, are zero because of the symmetry of the 
linear shear flow; e.g. is odd in k,. It should be noted that r3, is not zero but is 
symmetric and this symmetry is lost when it is multiplied by k, in the term Fz2. 

The components of the lift tensor, L,,, are given by 

Lij = (no summation), (A 30) 

where the ?jij represent the regular parts of the velocity perturbations, qij, at the 
origin, that is, a t  the body. If wedenote the Stokeslets by qslj, then the finite parts 
may be written as 

q.  = q! -qs' = ( - rsij) dk, 
m 

(A311 
- 

- m  
a j  z j  ij S 

where the rsij represent the Fourier transforms of the Stokeslets 

The cancellation of the Stokeslets may be achieved by integrating by parts the 
portion of each rij containing the singularity. For example, if we consider qil we 
may write 

so that ?jR1 becomes 

The value of this constant was found to be in agreement with the corrected 
value given by Saffman (1968, corrigendum). 
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The constants L,, and L,, were reduced to double definite integrals, while the 
remaining components of the lift tensor involved both double and triple integrals. 
These integrals were evaluated numerically to three-place accuracy. 
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